Skip to content

Retrieve Service

Bases: Service

Manages semantic prompt retrieval and indexing by coordinating between vector/document databases, tracking metrics, and responding to system events.

This service is responsible for receiving prompt submissions, retrieving relevant information using vector similarity, and handling the indexing and metadata enrichment process. It interfaces with plugin-managed databases and provides observability through metrics tracking.

Attributes:

Name Type Description
plugin_manager PluginManager

Access point for system plugins, including vector and document DBs.

vector_db_plugin dict

Plugin used for vector database operations (e.g., semantic search).

db_plugin dict

Plugin for interacting with the document database.

metrics_tracker MetricsTracker

Collects and resets retrieval-related metrics for monitoring.

meta_repository MetaRepository

Handles Meta object persistence and transformation.

repo_folders dict[str, Any]

Dictionary containing repository folder information.

Methods:

Name Description
init_async

Initializes database connections and plugin setup asynchronously.

start

Subscribes to system topics for prompt processing and indexing lifecycle.

stop

Cleans up the service and halts processing.

submit

Prompt): Begins the retrieval process and logs submission metrics.

on_submit_prompt

dict[Any, Any]): Processes a prompt message and submits for processing.

_on_repo_folders

dict[str, Any]): Updates repository folder information.

on_indices_complete

dict): Converts index payload into Index objects and queues for insertion.

_insert_engram_vector

list[Index], engram_id: str, repo_ids: str, tracking_id: str): Asynchronously inserts semantic indices into vector DB with repository filters.

on_meta_complete

dict): Loads and inserts metadata summary into the vector DB.

insert_meta_vector

Meta): Runs metadata vector insertion in a background thread.

on_acknowledge

str): Emits service metrics to the status channel and resets the tracker.

Source code in src/engramic/application/retrieve/retrieve_service.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
class RetrieveService(Service):
    """
    Manages semantic prompt retrieval and indexing by coordinating between vector/document databases,
    tracking metrics, and responding to system events.

    This service is responsible for receiving prompt submissions, retrieving relevant information using
    vector similarity, and handling the indexing and metadata enrichment process. It interfaces with
    plugin-managed databases and provides observability through metrics tracking.

    Attributes:
        plugin_manager (PluginManager): Access point for system plugins, including vector and document DBs.
        vector_db_plugin (dict): Plugin used for vector database operations (e.g., semantic search).
        db_plugin (dict): Plugin for interacting with the document database.
        metrics_tracker (MetricsTracker): Collects and resets retrieval-related metrics for monitoring.
        meta_repository (MetaRepository): Handles Meta object persistence and transformation.
        repo_folders (dict[str, Any]): Dictionary containing repository folder information.

    Methods:
        init_async(): Initializes database connections and plugin setup asynchronously.
        start(): Subscribes to system topics for prompt processing and indexing lifecycle.
        stop(): Cleans up the service and halts processing.

        submit(prompt: Prompt): Begins the retrieval process and logs submission metrics.
        on_submit_prompt(msg: dict[Any, Any]): Processes a prompt message and submits for processing.
        _on_repo_folders(msg: dict[str, Any]): Updates repository folder information.

        on_indices_complete(index_message: dict): Converts index payload into Index objects and queues for insertion.
        _insert_engram_vector(index_list: list[Index], engram_id: str, repo_ids: str, tracking_id: str):
            Asynchronously inserts semantic indices into vector DB with repository filters.

        on_meta_complete(meta_dict: dict): Loads and inserts metadata summary into the vector DB.
        insert_meta_vector(meta: Meta): Runs metadata vector insertion in a background thread.

        on_acknowledge(message_in: str): Emits service metrics to the status channel and resets the tracker.
    """

    def __init__(self, host: Host) -> None:
        super().__init__(host)

        self.plugin_manager: PluginManager = host.plugin_manager
        self.vector_db_plugin = host.plugin_manager.get_plugin('vector_db', 'db')
        self.db_plugin = host.plugin_manager.get_plugin('db', 'document')
        self.metrics_tracker: MetricsTracker[RetrieveMetric] = MetricsTracker[RetrieveMetric]()
        self.meta_repository: MetaRepository = MetaRepository(self.db_plugin)
        self.repo_folders: dict[str, Any] = {}

    def init_async(self) -> None:
        self.db_plugin['func'].connect(args=None)
        return super().init_async()

    def start(self) -> None:
        self.subscribe(Service.Topic.ACKNOWLEDGE, self.on_acknowledge)
        self.subscribe(Service.Topic.SUBMIT_PROMPT, self.on_submit_prompt)
        self.subscribe(Service.Topic.INDICES_COMPLETE, self.on_indices_complete)
        self.subscribe(Service.Topic.META_COMPLETE, self.on_meta_complete)
        self.subscribe(Service.Topic.REPO_FOLDERS, self._on_repo_folders)
        super().start()

    async def stop(self) -> None:
        await super().stop()

    def _on_repo_folders(self, msg: dict[str, Any]) -> None:
        self.repo_folders = msg['repo_folders']

    # when called from monitor service
    def on_submit_prompt(self, msg: dict[Any, Any]) -> None:
        self.submit(Prompt(**msg))

    # when used from main
    def submit(self, prompt: Prompt) -> None:
        if __debug__:
            self.host.update_mock_data_input(self, asdict(prompt))

        self.metrics_tracker.increment(RetrieveMetric.PROMPTS_SUBMITTED)
        retrieval = Ask(str(uuid.uuid4()), prompt, self.plugin_manager, self.metrics_tracker, self.db_plugin, self)
        retrieval.get_sources()

        async def send_message() -> None:
            msg = {'id': prompt.prompt_id, 'parent_id': prompt.parent_id, 'tracking_id': prompt.tracking_id}
            self.send_message_async(Service.Topic.PROMPT_CREATED, msg)

        self.run_task(send_message())

    def on_indices_complete(self, index_message: dict[str, Any]) -> None:
        raw_index: list[dict[str, Any]] = index_message['index']
        engram_id: str = index_message['engram_id']
        tracking_id: str = index_message['tracking_id']
        repo_ids: str = index_message['repo_ids']
        index_list: list[Index] = [Index(**item) for item in raw_index]
        self.run_task(self._insert_engram_vector(index_list, engram_id, repo_ids, tracking_id))

    async def _insert_engram_vector(
        self, index_list: list[Index], engram_id: str, repo_ids: str, tracking_id: str
    ) -> None:
        plugin = self.vector_db_plugin
        self.vector_db_plugin['func'].insert(
            collection_name='main', index_list=index_list, obj_id=engram_id, args=plugin['args'], filters=repo_ids
        )

        index_id_array = [index.id for index in index_list]

        self.send_message_async(
            Service.Topic.INDICES_INSERTED,
            {'parent_id': engram_id, 'index_id_array': index_id_array, 'tracking_id': tracking_id},
        )

        self.metrics_tracker.increment(RetrieveMetric.EMBEDDINGS_ADDED_TO_VECTOR)

    def on_meta_complete(self, meta_dict: dict[str, Any]) -> None:
        meta = self.meta_repository.load(meta_dict)
        self.run_task(self.insert_meta_vector(meta))
        self.metrics_tracker.increment(RetrieveMetric.META_ADDED_TO_VECTOR)

    async def insert_meta_vector(self, meta: Meta) -> None:
        plugin = self.vector_db_plugin
        await asyncio.to_thread(
            self.vector_db_plugin['func'].insert,
            collection_name='meta',
            index_list=[meta.summary_full],
            obj_id=meta.id,
            filters=meta.repo_ids,
            args=plugin['args'],
        )

    def on_acknowledge(self, message_in: str) -> None:
        del message_in

        metrics_packet: MetricPacket = self.metrics_tracker.get_and_reset_packet()

        self.send_message_async(
            Service.Topic.STATUS,
            {'id': self.id, 'name': self.__class__.__name__, 'timestamp': time.time(), 'metrics': metrics_packet},
        )